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F-8C ADAPTIVE FLIGHT CONTROL EXTENSIONS 

Gunter Stein and Gary L, Hartmann 

Honeywell, Inc. 9 Minneapolis, MN 

SECTION 1 

PROGRAM OVERVIEW 

NASA is conducting a research program in digital fly-by-wire technology 

using a modified F-8C aircraft. To support these efforts, Honeywell initiated 

a design program in 1974 to provide digital adaptive control laws suitable for 

flight test. As part of the ground rules, measurements were restricted to rate 

gyros, accelerometers and servo position. Adjustment of the control laws is 

based on this information. Aircraft like the F-8, whose performance require- 

ments can be satisfied with air-data-scheduled control laws, benefit most by 

eliminating air data gain scheduling. This will be particularly valuable for 

future aircraft requiring flight-critical gain adjustment. The control laws 

were constrained to be compatible with the existing airframe without structural 

modification. Hence. they use only existing elevator, rudder. and ailerons as 

control effecters. each powered by existing actuators. 

The design program recommended an adaptive concept which combines 

gain-scheduled control laws with explicit maximum likelihood identification to 

provide the scheduling variables. This approach was selected from a compari- 

son of three candidate concepts: 

l Implicit gain adjustment based on self-excited limit cycles 

e Gain adjustment based on explicit identification using a Liapunov 

model tracker 

@  Gain adjustment based on explicit identification with Maximum 

Likelihood Estimation (NILE) 



The MLE Baseline 

An overall functional diagram of the recommended design is shown in 
Figure 1, The control laws consist of a quadratic-optimal C!* model-followi 
system in the pitch axis and a first-order roll model-following system in thl 
lateral-directional axes. High frequency roll-off compensation and integral 
action required for trim were incorporated directly into the optimal design 
formulation. The resulting feedback and feedforward gains were simplified 

and approximated as simple functions of estimated surface effectiveness by 
the adaptive algorithm. 

+ 
Actuator 

Optlmal commands 

cpi%nds 
-----, control 

laws 
. 

Gain 

Adaptive - 
algorithm 4 

Figure 1. F-8C Adaptive Structure 

Surface effectiveness estimates are obtained from an explicit pitch-axis 
parameter identifier based on standard MLE theory. To avoid on-board 

iterative calculations, the identifier uses a parallel channel implementation. 
Several Kalman filter channels operate at fixed locations in parameter space 
Likelihood functions are computed for each. Sensitivity equations are then 

2 
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solved only for the maximum likelihood channel and used to interpolate from 

there to the correct parameter value. Theoretical identifiability results 

were used to determine the number of parameters that could be identified 

with small test inputs. This accuracy analysis also provided insight into 

the number and location of the filter channels. 

Five parallel channels suffice to handle the F- 8C aircraft over its entire 

operational flight envelope. They estimate three parameters -:- surface 

effectiveness (M&, pitching moment due to angle-of-attack (Ma), and:air- 

speed (V). Estimation accuracy depends strongly on the signal levels in the 

control loop. For the small test signals tolerable in operational situations, 

errors of 10-2 0 percent in M 
60 

and 20-30 percent in Ma and V are typical in 

six-degree-of-freedom simulation runs. Theoretical accuracy analyses 

confirm these error levels. The gain adjustment in the pitch and lateral 

control laws is a function of estimated M 
60 

only. However, the MLE design 

was selected in large part for its potential to identify additional parameters 

which may be needed for scheduling in other applications (ref. 1). 

Design Extensions 

The design program was extended in 1975 to further develop the MLE 

concept. Three specific areas of study were selected: 

0 Improvement of the baseline pitch-axis identifier.- This 

research was directed toward improving the performance 

of the NILE algorithm by incorporating attitude data, esti? 

mating gust statistics for setting filter gains, and improving 

parameter tracking during changing flight conditions. 

0 Design of a lateral NILE algorithm. - The purpose of this 

algorithm was to improve true air speed and angle-of- 

attack estimates during lateral maneuvers. These 



estimates could then be used as scheduling parameters 

in an inertially coordinated lateral CAS. 

l Analytical redundancy. - The purpose of this task was to 

examine relationships between the pitch axis sensors 

inherent in the MLE design and to exploit them for sensor 

failure detection. Success of such techniques could 

reduce the number of redundant sensors required in 

flight control implementations. 

Conclusions of the Extension Study 

Research and design efforts performed under the extended program are 

documented in this report. They lead to the following major conclusions: 

1) The pitch-axis study indicates that on-line estimation of 

gust statistics works well and will reduce test signal 

requiremeLlts and/or enhance accuracy, However, no 

significant improvement in accuracy is provided by 

incorporating attitude data. By restructuring the para- 

meter interpolation as another Kalman filter, significant 

improvements in tracking time-varying parameters can 

also be achieved. 

2) The lateral study shows that inertially coordinated 

lateral control systems can be implemented without air 

data measurements. A lateral identifier was designed 

to improve the baseline angle-of-attack and airspeed 

estimates. These were used to schedule an inertially 

coordinated CAS and show good damping and turn 

coordination. The resulting adaptive structure could 

potentially be simplified to a single extended Kalman filter. 

4 



3) Preliminary results on analytical redundancy indicate 
promising potential for sensor reduction in redundant 
systems. Three candidate analytical redundancy pro- 
cedures were developed which exploit existing compu - 
tations in the baseline identifier structure to detect and 
isolate gyro and accelerometer failures. Limited 
simulation evaluations of these procedures show promising 
performance of at least one candidate. Further evaluations 
are required to solidly establish false alarm and missed 
alarm characteristics. 

Document Organization 

This document is subdivided into six sections. This section is an 
overview of the extensions to the baseline F-8 Adaptive program. Section 2 
presents a list of symbols used throughout the report. Section 3 presents 
the results of the modifications to the baseline pitch identifier, Section 4 
preseilts the MLE lateral adaptive design, Section 5 presents the results of 
the analytical redundancy study. Section 6 presents conclusions and recom- 
mendations. Section 7 contains a list of references. 

For additional details of the baseline in F-8C Adaptive Study, the reader 
is referred to the earlier report prepared under this contract (ref. 1). 



SECTION 2 

SYMBOLS 

Operators 

Arg {min f(x)] 
X 

E(s ) 

exp(s 1 

Cd. ) 

- exponential 

- natural logarithm 

cn det(s ) - natural log of determinant 

PWY) 

S 

Z 

(*) = d”t 

A(* 1 

VP” 1 
c 
1x1 
lkll”, 
Superscripts 

i) 

f-1 
( + ) i 

( P 

- minimizing argument of function f(* ) 

- mathematical expectation 

- conditional probability distribution of x given y 

- Laplace operator 

- delay operator 

- time derivative 

- increment 

- gradient vector with respect to parameter 
vector 5 

- second partial derivative matrix with respect 
to parameters 5 

- p-th component of d. ) 

- summation 

- absolute value 

- quadratic form xTMx 

- estimated value 

- one-step predicted value 

- value for parallel channel i 

- nominal value 

6 



II 

SYMBOLS (Continued) 

Subs crbts 

( )m 

( ).k 

( )L 

( )P 

( js’ 

( 4 

- measured value 

- value at time tk 

- value for lateral identifier 

- value for pitch identifier 

- stability axis 

- true value 

Upper Case .Symbols 

A 

B 

CY 

D 

G 
& GLAT’ GROLL’ GRSS 

H 

Hi 
I 

‘a’ I g ’ Iar 

J - partial likelihood function L - l/2 C4ndet.B 

K 

KRP9 KRUM’ KRPM 

KAC 
L 

- discrete system dynamics matrix 

- (1) discrete system input matrix 
(2) residual covariance matrix 

- response variable NZ + Vcoq 

- measurement matrix, y due to u 

- control gains 

- measurement matrix 

- hypothesis number i 

- identity matrix 

- failure flags for accelerometer, gyro and 
analytic test 

- Kalman filter gains 

- rudder control gains 

- aileron control gain 

- likelihood function 



SYMBdLS (Continued) 

Lv 
M 

Mq, M,,M6(M6e)‘Mb 

MO 

M 60 

Mat 
N 

N,. N Y 
P 

pO 

Qx,i 
Qi 
S 

T 

uN 
V 

V co 

“#I’ Y6a’ Ydr 

yN 

zcf’ z6 

lateral gust field scale length 

number of parallel channels 

pitching moment coefficients due to 
indicated variables- 

trim pitching moment 

M6 value for rigid airframe (without 
quasistatic flexibility) 

true value of Me0 

number of data samples 

normal and lateral acceleration 

Kalman filter covariance matrix 

a priori parameter covariance matrix 

noise intensities for parameter process model 

failure rate for element i 

Kalman filter design statistics 

transformation matrix 

sequence of N control inputs 

air speed 

crossover velocity in C* response 

lateral force coefficients due to indicated 
variables 

sequence of N measurements 

normal force coefficients due to indicated 
variables 

8 



SYMBOLS (Continued) 

Lower Case Symbols 

‘S ‘i - 

% 

% 

d 

429 go 

h 

i* 

n 

r 

t 

U 

V 

“g 
X 

Y 

Z 

Greek Symbols 

Upper Case 

r 

- parameter vector with components c. 1 
- a priori estimate of c 

- true value of c 

- sensor displacement from c. g. (4. 62m) 

- gravity 

- altitude 

- index of the minimum-L channel 

- system order 

- roll rate 

- dynamic pressure 

- (1) yaw rate 
(2) number of measurements 

- time 

- control input vector 

- lateral velocity perturbation 

- lateral gust component 

- state vector 

- measurement vector 

- test statistic in analytic test 

- discrete system noise input matrix 



SYMBOLS (Continued) 

Greek Lower Case 

Q 

ek’ bk 

Yij 

5 

- angle-of-attack 

- gust angle-of-attack 

- angle of sideslip 

- gust angle of sideslip 

- aerodynamic surface positions 

- stability-axis yaw rate error 

- generic likelihood filter states 

- ij element of I7 

- dummy argument for values of parameter 
vector ,c_ 

- white noise process 

- pitch attitude 

- parameter model state variables’ 

- exp(-At/T ) 

- Kalman filter residuals 

- white noise process 

- air density 

- standard deviation of variable x 

- time constant 

- roll attitude 

- yaw attitude 

- natural frequency 

10 



SECTION 3 

PITCH IDENTIFIER REFINEMENTS 

This section includes research results on recommended refinements of 

the parallel-channel maximum likelihood identifier developed in ref. 1 . 

It includes a brief summary of the identifier’s baseline design and perfor- 

mance characteristic, with emphasis on fundamental performance limita- 

tions which motivate the refinements, Three potential areas of improvement 

are discussed: 

0 Adaptation to changing gust level statistics, 

0 Incorporation of attitude measurements, and 

0 Parameter tracking aids. 

Cur investigations showed that the first and third of these areas provide 

substantive performance improvements for the identifier. Hence, design 

modifications are recommended to incorporate these features in the baseline 

system. The second area was found to offer only minor improvements which 

fail to justify design modifications, 

Baseline Identifier Design Summary 

The recommended baseline F-8C identifier, ref. 1 , is illustrated in 

Figure 2. It consists of a parallel-channel structure designed to perform 

on-line maximum likelihood estimation of three aircraft parameters: M60, 

c2, c3’ These represent elevator surface effectiveness, pitching moment 

due to angle-of-attack, and velocity, respectively. Only pitch axis data 

CQ NZ , em) is used for identification. This overall structure is a result 

of detail% identifiability analyses for the F-8C and tradeoff studies of several 

11 



7 
” (1) 

Accumulat ion s ‘(1) 
D 

1 
“(2) D 

Accumulat ion 

’ LQ2!0 
5  

L(2) 

s+.2 
. ’ 
: . . . . -. . 8.33 Update/set 

I 
(5) 

” Accumulat ion 

’ L  (c(5), 0  c s 1  (5) 

st.2 

L  

+ 1  M  
SenSkiVity A Y 

’ fllters 
Accumulat ion Newton- . bo 

’ vL,v2L 
--L- 

v L, P2L , Raphson c =  c2 

- c=c WI  st.2 conectlon - 1  c3 

50  Updates/set 8.33 Updates/set 

Figure 2. Parallel-Channel Maximum Likelihood Identifier 



candidate identification algorithms, ref. 1 . Only selected design details are 
presented here which are relevant to the refinement studies, 

Parallel minimization. - The main feature of the F-8C identifier is its 

parallel Kalman filter structure. This structure provides a non-iterative 

way to carry out the function minimizations required by maximum likelihood 

estimation. Recall that the matimum likelihood method provides a solution 

of the following identification problem : 

Given: Xk = A(c) Xkol + B(G) Uk-l + r(s) 5k 

(1) 
yk = H(c) xk f D(S) uk + nk k = 0, 1, . . . 

Find : Unknown constant parameters c 

The usual interpretations apply: x’s are states, u’s are controls, y’s 

are measurements, A, B, I’, H, D are matrices (functions of_c), and 5, and 

qk are discrete white noise processes, As shown in ref. 1 the theoretical 

maximum likelihood solution of this identification problem is 

CL 

+ = Argbax P (Y,\s = 5, UN)1 
c 

= Argfmin - &tp (YNls = <, UN)3 
c 

= Arg[min$ El [ 1 b, - ;k (<)\I2 + tndet B(C)] 1 

B-+<) 

(2) 

where p(cr 1p) denotes probability distributions of a conditioned on p, YN and 

UN denote sequences of N measurements and N control inputs, ik(c) are 

Kalman filter predictions of yk given-Ykol, Ukol and 2 = C, and B(C) is the 

error covariance matrix for those predictions, 

13 



The F-8C identifier approximates equation (2) in the following manner. 

First, it evaluates the function to be minimized [this is the likelihood func- 

tion L(<, k)] at several fixed values, c (i) , of the argument <, The best of 

these values, c 
(i*) 

, is then selected and a single Newton-Raphson step is 

taken from there to the parameter estimate, i. e., 

A -1 
CN = c W:) _ lv2~) VL (3) 

The symbols VL and 2 L denote first and second partial derivatives of L 

with respect to c evaluated at 5 = 5 
(i*) 

. In order to keep calculations as 

simple as possible, the Newton-Raphson step is actually based on approxi- 

mate versions of these derivatives, as summarized below. 

Then 

N 
L 4 i C (vTB 

-1 

k=l k 
vk + &ndet B) 

(4) 

(5) 

N 
VL = c [-vGk BslVk + fTr (vkvk T-B) V(B-l)l 

k=l 
(6) 

-“c - v.i_ B -1 ~1, 

(This 

V2L = “c [-v2Gk 
k=l 

k=l -n n 

is justified because E (vvT) -) B as 5 + s) 

B-‘Vk - VGkV(B-l)vk + VGk B 
-1 ^T vyk 

1 A 
+$%[(-2vykVk T 

- VB) V(B 
-1 

) + (vkvk T - B) V2(B+13 

-“c (vikB-’ v:k’ ++TR VB B-l VB B-l) 
k=l 

14 



[This is justified because v + (zero mean white noise) 

and E(vvT) 4 B as 5 + _c] 

- “c 
k=l 

yGk B-l VGkT (7) 

(This assumes VB B-l is small) 

Equations (6) and (7) were used to define VL and V2L for purposes of identifier 

design. 

Parameter tracking. - The theoretical MLE solution equation (2) is 

based on the assumption that the vector c is constant over the time interval 

covered by the data sequences UN and YN. This means that current data re- 

ceives equal weighting with past data in the L, VL and V2L summations of 

equation (5), (6) and (7), and large errors result in the event that c actually 

undergoes changes. Because the latter case is prevalent for aircraft in rapid 

flight transition, the identifier in Figure 2 employs high-pass filters to 

“forget” old accumulated likelihood data. This heuristic “fix” of the theory 

is actually equivalent to exponential de-weighting of terms in the likelihood 

summations. This can be readily verified by observing that a cascaded 

accumulation/high-pass operation has the following analog transfer function: 

[+[s:+] = [s:$] 
In discrete-time form, this corresponds to 

= p b-N-2 + A~N,I ) + AeN 

vN-k As 
k=l k 

(8) 

(9) 

15 



where TV = exp (-ht/~), and c denotes a generic output variable of the, corn- L 

bined accumulation/high-pass operation on the input sequence As. Letting 

e be L, VL, and V2L with the appropriate substitution results in the follow- 

ing update equations:, i. . 

: _’ 

LN = pLN-l + 2 -Q ‘,v 
T B-1 vN + 4ndetB) ’ ’ (10) 

VL N .= p “LNBl + (-V;NB-lvN) 

V2LN = /.LV 2 LN,l + (VG,B-’ VGNT) (12) 

(11) 

These equat,ions are used to calculate L., VL, and V2L in the baseline identi- 

fier, A high-pass time constant of 7 = 5 set was selected as an experimental’ 

compromise between tracking ‘error and identification accuracy at fixed : 

flight conditions (ref. 1 ). ’ : 

Plant model and parameterization. - Each Kalman filter in the parallel ; 

identifier structure was designed for a fixed plant model whose coefficients 

are parameterized as functions of Mea, c2, and c3. The model is sum- 

marized in Figure 3. It includes longitudinal short period aircraft states 

(q, cu), two Brownian motion states to simulate trim (g/V, MO), and three 

white noise disturbances to approximate gusts and trim changes; 

d A 
FPg = y21 nl with y21 = crw 2 /VLw 

d&3 
dt V - ~3~2.~2 with ~32 = Y 

A (T (go/V) 

$MoI 
A 

743 q3 with‘~~~ = o6 
trim M6* 

Measurements are represented by algebraic sensor output equations for 

pitch rate, normal acceleration and surface position, All are corrupted by 

discrete white noise sequences. : , 

16 
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State Equations : 

Measurements : 

yk 

k = 0, 1, 2, . . . 

Parameterization: 

M6 
Mq 
McY 
V 

zcYv 

z6v m 

0 

dM6-Z6V 

1 

Mg o (1 + -016 Me0 + .0002 Meo2) 

-.23 + t.028 - .017 C2)M6, 

(. 61 + .92 c2) M60 

7.7 M6 

Figure 3. Plant Model for F-8C, Identifier 



Coefficient in the model are defined in terms of MeO, c2, and c3 accord- 

ing to the parameterization given in Figure 3. Together with specified values 

for the six environmental statistics 

(13) 

this parameterization completely defines the Kalman filter gains, K(c (i), S), 

and error covariance matrices, B(c (9 , S), in the parallel structure. The 

gains alone are actually valid for a broader class of statistics, namely the 

specified set in equation (13) with each element multiplied by an arbitrary 

common scale factor u f 0; i, e., 

K(c, Us) = K( 5, s), (14) 

The matrices B for the same class of statistics are given by 

B(c, US) = u2B tc, s), (15) 

This means that the likelihood function accumulations in equations (lo), 

(ll), and (12) change as u changes but the parallel filters themselves do not. 

The F-8C identifier takes advantage of these relationships by using nominal 

values for the design statistics, S = S”, but allowing a common scale factor 

to vary. The latter is estimated on-board and used to scale the likelihood 

functions accumulated in equation (10). 

This process of “adapting to proportional noise statistics” prevents per- 

formance deteriorations due to changing values of the scale factor. The 

following nominal design statistics were used for S: 

S" = (6.0, ,017, ,001, .0026, ,644, .0008) (16) 
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Since these numbers are fixed for all operating conditions (i. e., with 

and without sensor noise, with and without gusts, with slow or fast trim 
changes, etc. ), they represent experimental compromises over many simu- 

lation runs, As seen later in the performance sumrmries, further per- 

formance benefit can be gained by adaptively adjusting the relative values of 

these statistics as well as their common scale factor, 

Channel locations, - As indicated in Figure 2, a total of five parallel 

channels suffice to handle F-8C parameter identification over the entire 

flight envelope. Their locations in parameter-space are tabulated below and 

illustrated on the Ma - MGo plane in Figure 4. The most significant feature 

of these locations is their logarithmic distribution along the MGO coordinate 

axis. Each channel “covers” a fixed percentage range (f50 percent about its 
nominal MGo value). This distribution is motiviated by identification accuracy 

studies which indicate that theoretical identification errors are directly pro- 

portional to the true M60 values (ref. 1 ). 

Channel 
location Subsonic range Supersonic 

range 

1 2 3 4 5 

M6O 

i 1 

-2.34 -5.27 -11.9 -26.7 -26.7 

c = c2 0 0 0 0 1. 0 - 

c3 0 0 0 0 60. 0 
- 

Baseline Identifier Performance Summary 

The identifier’s performance was evaluated on NASA Langley’s nonlinear 

six-degree-of-freedom F-8C simulator (ref. 3 ) against four “measures of 

goodness”: 
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0 Identification accuracy at fixed flight conditions 

0 Convergence characteristics 

0 Parameter tracking during standard flight transitions 

l Response to major maneuvers and configuration changes ’ 

Results show good performance throughout- the flight envelope; Sdentifi- 
cation errors are consistently below 16-30 per’cent which is more than ade- 
quate to schedule the pitch and (reduced-measurement) lateral control laws, 

Accuracy deteriorates. somewhat during rapid flight transitions but remains 

satisfactory for gain scheduling. Convergence from incorrect parameter 

initialization is smooth.and rapid, taking ‘approximately one second to reach 

80 percent of final estimated parameter values, There are also no major 

difficulties with large maneuver (various rolls, high-g pullups, step gusts, 

etc. ) and configuration changes (speed brake deployment, gear and wing 

transitions, and c. g. motion). 

Like all realistic designsi however, there are design compromises, 

operational issues, and fundamental limitations which constrain the perfor- 
mance achieved. For the baseline F-8C identifier, these constraining items 

include : 

0 Accuracy compromises due to fixed filter design statistics, 

0 Test signal requirements, and 

0 Tracking errors, 

Accuracy compromises due to fixed filter statistics are illustrated in 

Figure 5. This figure shows simulator traces of a standard accuracy test at 

fixed flight condition FClO (h = 0. m, Mach 0. 7). The controlled aircraft was 
“flown” for 30 seconds under quiescent conditions (sensor noise plus test 

signal only). This is followed by a C:k doublet command, then a 30-second 

period of turbulence (2 m/set rms); another C*-doublet, and finally 

quiescence again. 
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This standard test sequence matches assumed filter design statistics for 

the central turbulence time segment only. Errors which result when the 
A 

assumptions are violated are clearly evident on the q error trace 

A@ = (9 - G/q + 

Test signal levels required for the simulator evaluations in (ref. 1 ) are 

tabulated below: 

FC h(m) .- Mach 
Rms g’ s due to 

test signals 

5 6090. 0.4 0.01 

1 6090. 0. 67 0.025 

8 12180. 1.2 0. 02 

10 0. 0. 7 0. 04 

While these numbers cannot be used directly to predict aircraft require- 

ments, they are high enough at FClO to suggest that test signals may become 

an important issue in flight. Test signal requirements interact strongly with 

identification accuracy and with design compromises which reduce accuracy. 

The errors due to fixed statistics in Figure 5, for example, can be com- 

pletely eliminated with sufficiently large pilot commands or test input levels, 

Conversely, command and/or test signal levels can be reduced with inherently 

more accurate identifier designs. 

Tracking error limitations are illustrated by the simulator traces shown 

in Figure 6. These recordings correspond to a standard max-power acceler- 

ation maneuver starting at FC5. They show estimation errors in excess of 

30 percent on the A?j trace as the maneuver is executed, Errors as high as 

50-70 percent have been observed during more dramatic flight transitions and 

configuration changes. Fundamentally, such “tracking errors” are due to 

incompatabilities between fixed-parameter MLE theory and actual aircraft 

parameter behavior. Even augmented with the heuristic high-pass filters in 

Figure 2, the theory offers only limited tracking performance. 
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Figure 6. Standard Tracking Test Traces: Baseline 
Identifier 
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TABLE 1. - THEORETLCAL GUST LEVEL ES.TIMATION ACCURACY 

Conditions 

FCl - 6090m, Mach ,67 

Data Length - 10 set 

Test Signal - . 015 g’s square wave 

Sensor Noise - gyro 0.15 deg/sec rms 
accel 0.02 g’s rms 

Accuracy (lower bound) 

I ACTUAL awe I 
Percent error, UC/ 15 1 

1 M CY v Owe I m/set I M60 , 
0. 3 7. 8 13 15 30 

1.0 5. 0 12 15 18 

I 2. 0 3. 1 10 14 16 

Gust level estimation algorithms. - In the face of this limited accuracy 

potential, it was decided that continuous gust level estimation algorithms 

(and continuous readjustment of filter gains) would prove unjustified. As an 

alternative, a much simpler discrete algorithm was adopted which only dis- 

criminates between two levels of gust intensity--high and low--without 

attempting to estimate aw explicitly. The discrimination is done with a 

straightforward comparison of likelihood functions. Suppose we designate 

the two gust levels as 

ow 1, I= $ 
low 

ow I. = x 
high 

(20) 
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and assume that G = 4 is currently true. Then maximum likelihood theory 
assures the following inequality for N sufficiently large: 

UC’, N) 
I 

< UC’, N) 
I 

(21) c’ = k,, 4) C’=(_c,, a 

It is reasonable to assume that this inequality will also hold if 5 is not 

precisely equal to ct and if owt is not precisely equal to 4. This has been 
verified with experimental calculation of sample likelihood functions. The 
inequality can then be used as a discriminant function between two effective 

gust levels, i. e. , 

High level if L 

I 

>L 
ct = (&i*), &) 

Low level if L 

5’ = (CC*), j7) 

Cl = (p, t> 

(22) 

Identifier modification. - These discrete discrimination equations are 
appealing because they can be readily incorporated in the baseline identifier. 

All that is needed is a sixth parallel channel located at 5 = 5 (i:!) in parameter 
space but operating with the opposite gust level, i. e. , with ow = 2 when the 
rest of the identifier is using uw = & and vice versa. The difference between 
likelihood functions L (f-5) and L(i”) can then be monitored and the identifier ’ 
switched from 6 to z (or vice-versa) whenever L (6) falls (sufficiently) below 
.(i*) . The fact that only two gust levels are utilized makes switching particu- 

larly easy. Two sets of filter gains (and gain sensitivities) corresponding to 

=W 
= 4, t can be stored in memory for each parameter value 5 (9 and brought 

on-line in accordance with the L (6) _ ,(iS) comparison. 
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A block diagram of the baseline identifier with these modifications is 

shown in Figure 7. 

Performance of the modified identifier, - The baseline identifier was 

modified as illustrated in Figure 7, and evaluated on the F-8C simulator at 

NASA Langley Research Center. A flow diagram of the new implementation 

is given in Appendix A. Its high and low gust statistics were chosen as 

t= 1,5m/s ec and 4, = 0.3 m/set, respectively. Sizeable hysteresis levels 

were included on the L (6) _ .(i>x) decision logic in order to prevent chattering, 

and the original a estimate (common scale factor) was tightly constrained to 

prevent incorrect gust level decisions during periods of large pilot activity. 

These details are documented in Appendix A. 

Evaluation emphasis was placed on identification accuracy at fixed flight 

conditions, test signal requirements, and functional characteristics of the 

gust level decision logic. The principal results are shown in Figures 8 - 12. 

These are standard accuracy tests, one each at FCl, FC5, and FC8, and two 

at FClO’ (h = 914 m, M = 0. 8). These tests consist of the same maneuver 

sequence discussed earlier - 30 seconds of quiescence, a C+ doublet, 30 

seconds of turbulence, another C* doublet, and quiescence again - all flown 

with sensor noise and test signals. The traces show uniformly good per- 

formance of the gust level decision logic (the channel flag trace) and improved 

accuracy over the baseline identifier at FClO ’ (compare the ~6 traces in 

Figure 5 and 12). The modified identifier also exhibits lower test signal re- 

quirements on the simulator. This is evident in Figure 13 which was run 

with 0. 25 x nominal test signals and shows no noticeable accuracy deteriora- 

tion over Figure 12. 

By comparing Figures 11 and 12 with 8 - 11, it is apparent that the modi- 

fied identifier still exhibits some residual sensitivity to gust levels (- 20 per- 

cent in hq) in high dynamic pressure flight. We conjecture that this remain- 

ing error is due to inaccuracies in the long Newton-Raphson extrapolation 
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which,must be made from  the m in-L channel,’ Channel 4 located at Me0 = -26,7, 

to the true parameter value at FClO’, Me0 %  -43. Figure 4 confirms that this 
is a significant parameter separation. In theory, of course, the Newton- 

Raphson step will be accurate only if the likelihood function L( C, N) is quadratic 

in 5. This is known to be untrue from  experimental plots of the function 

(ref. d ) and, hence, some extrapolation error must be expected. The con- 

jecture has been further confirmed by locating Channel 4 at Me0 = -40 

temporarily. This virtually elim inates the remaining gust- sensitivity in 

Figures 12 and 13. 1 
_ 

Incorporation of Attitude Data . 

The second topic which was investigated for potential accuracy improve- 

ments is the use of pitch attitude measurements in the identifier. These 

measurements were explicitly ruled out for the baseline design because the 

test aircraft is not equipped with an all-attitude platform . Successful all- 

attitude operation is a groundrule for the overall adaptive system. This 

groundrule is relaxed here for the specific purpose of investigating accuracy 

improvements offered by the use of attitude data. 

As always, the investigation began with evaluations of the t,heoretical 

identification accuracy achievable with and without pitch attitude measure- 

ments. It did not proceed further because these evaluations showed that atti- 

tude data has no significant impact on accuracy. Representative results which 

illustrate this conclusion are given in Table 2. This table compares lower 

bounds on identification accuracy for six pitch dynamic parameters including 

the three parameters MGo, c2, c3 recognized by the baseline identifier and 
-: 

three other small perturbation parameters’$I;; c4; c6’:$hich were neglected 

due to poor identifiability’ (ref. 1 ‘“). 
* 

The test condition is FCl with standard 

test signals, sensor noise and gust levels. The first column in the table 

represents initial uncertainties (RMS) of the indicated parameters, the second 
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TABLE 2. - THEORETICAL IDENTIFICATION ACCURACY 
WITH AND WITHOUT ATTITUDE DATA 

Conditions 

FC1 - 6090 m, Mach. 67 

Data Length - 1.0 set 

Test Signal - . 015 g’s square wave 

Sensor Noise - Gyro 0.15 deg/sec rms 
Acceleration 0. 02 g’s rms 
Attitude 0.25 deg rms 

Gust Level - 2 m/set 

Accuracy (Lower Bound) 

Parameter 

Cl (Mq) 

C2 (MJ 

cg WI 

cq mm V) 

M6O 
c, (‘6 v) 

A-priori standard Standard deviation Standard deviation 
deviation without 8 with 8 

measurement measurement 

,065 .0552 .0550 

,135 .0394 .0394 

31. 5 26. 3 26. 3 

5. 0 4.38 4.38 

15. 0 ,408 ,404 

l 075 .0750 .0750 
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represents uncertainties after processing 10 seconds of pitch rate and normal 

acceleration measurements, and the third represents uncertainties after 

processing 10 seconds of rate, acceleration and pitch attitude measurements. 

As in (ref. 1 ), these before-and-after comparisons show that only I!vI~~, c2 

and to some extent, c3 can be identified. More importantly, they also show 

that attitude measurements offer very small accuracy improvements - no 
more than one percent at best. Such improvements provide insufficient 

justification for the added complexity required to incorporate pitch measure- 

ments in the identifier. 

Tracking Aids 

The third topic investigated for identifier improvements was the “track- 

ing error” issue. As discussed earlier, tracking errors are inherent in the 

constant-parameter NILE theory, and the heuristic high-pass filters of the 

baseline identifier alleviate them only partially, Initial objectives of the 
investigation were to improve the heuristic high-pass solution by automatically 

adjusting the high-pass time constants with measured maneuver conditions. 

This quickly proved ineffective because shorter time constants produce 

noisier parameter estimates with only modest reduction of tracking error, 

Despite their lack of success, however, these early efforts contributed in- 

creased understanding of the tracking error phenomenon and led eventually to 

identifier design modifications with much improved tracking capability. A 

major discovery of the early studies was that tracking errors are caused not 

only by constant-parameter limitation of the NILE theory (i. e. , lags due to 

likelihood accumulation) but also by uncompensated trim transients during 

flight transition. These two error mechanisms are discussed separately 

below. 

39 



Tracking errors due to trim. - The plant model, Figure 3, is valid in 

the short-period frequency range only, from perhaps 1.0 to 30 rad/sec. 

This is true despite the presence of the “trim states”, g/V and MO. The 

latter are crude representations of steady state (trim) disturbance levels 

which do not properly represent low frequency dynamic behavior such as 

phugoid motion and trim changes during flight transitions. In fact, the trim 

states turn out to be only slightly more general than ordinary first order 

washout filters (high-passes) on the measurements qm NZm and 6m, Hence, 

they have the same limited capability to compensate for lunmodeled low fre- 

quency dynamics. 

A comparison of low frequency compensation methods with trim states 

and with washouts is given in Figure 13. In the first method, each channel of 

the identifier is based on four states (q, cy, g/V, MO) and accepts data direct- 

ly from the sensors. In the.second method, each channel is based on two 

states (q, cu) and accepts data through high-pass filters. Dynamically these 

two systems are similar. Method 2 has three small real roots at s = -a 

and one fast second-order root pair for the (closed-loop) Kalman filter. 

Eigenvalue analysis of the Kalman filters in Method 1 shows almost the same 

second-order pair and also two small real roots, with exact locations deter- 

mined by design statistics u 
@ 

and u6trim. Performance-wise the two systems 

prove equivalent if design statistics are chosen such that the slow roots in 

Method 1 are approximately equal to those of Method 2. 

Both methods fall short of providing adequate low frequency trim com- 

pensation. This is illustrated in Figure 14 which shows traces of individual 

likelihood function for the five baseline channel locations, The traces were 

recorded during the standard flight transition in Figure 6. Method 2 was used 

for trim compensation, with washout frequency w = a = 2.0. Since the accelera- 

tion maneuver starts at FC5, the minimum likelihood function is L (2) immed- 

iately before full power is applied. Ideally, L (2) should remain the best 

channel early in the transition, passing later to L (3) , then to Lf4) and finally 
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to the supersonic channel L (5) . The run shows that something different 

actually happens. Large transients appear early in the transition which 

cause L(l) to minimize initially and pass control back to L (21, L(3), L(4) , 
and Lt5) only later in the maneuver. Interpreted in Figure 6, the temporary 

selection of L (1) over Lt2) indicates that incorrect low 1 Me0 1 values (also 

low G values and negative Aq values) minimize the likelihood function 

temporarily. 

The fact that these transient errors are at least partly due to inadequate 

trim compensation is verified in Figure 15. This figure shows likelihood 

function traces for the same flight transition maneuver but with different 

trim compensation filters, In addition, all test signals and other external 

excitation have been removed to highlight trim-induced errors. Two cases 

are shown, both using second-order washout filters of the form s2/(s2 + 1. 5 

ws + w2). In Case 1 w is 0. 5 rad/sec, and in Case 2 it is 2.0. The traces 

clearly demonstrate that substantial trim transients exist when the washouts 

pass signals at low frequencies. For w sufficiently high, the transients are 

virtually eliminated. Comparisons of Case 2 and Figure 15 also indicates 

that second-order washout filters are dramatically superior to first-order 

filters. This can be explained by the ramp-like character of trim surface 

position during the standard transition maneuver. Second-order washouts 

remove ramps much more effectively than first -order washouts. 

Based on the above findings, improved second-order trim compensation 

filters (Method 2) were incorporated in the baseline identifier. Method 2 was 

selected over Method 1 because the latter requires second-order disturbance 

models for MO and g/V in each Kalman filter channel in order to achieve the 

same performance benefits as three second-order washouts on qrn, NZm, and 

‘3 , with outputs fed to all channels. The plant model for Method 2 was 

cgnged slightly from that implied in Figure 14. It includes 6e as a state 

variable in order to permit the identifier to utilize servo position as its con- 

trol input measurement. Details are given in the flow diagrams of Appendix A. 
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Tracking performance with these modifications is illustrated in Figure 

16. This figure corresponds directly to Figure 5 for the baseline identifier. 
It is evident that improved trim compensation has reduced the tracking error 

problem, However, substantial errors still remain. These are due to 

limitations of NILE theory as discussed next. 

. 

Tracking errors due to NILE limitations. - The second principal source 

of tracking errors can be attributed to fundamental limitations of constant- 

parameter NILE theory. These limitations can be appreciated most easily 

in terms of a new interpretation of the baseline parallel-channel algorithm 

which was developed in the course of the tracking error investigation, 

The new interpretation shows that the Newton-Raphson correction of the 
baseline identifier is entirely equivalent to a Kalman filter which estimates 
the “states”, A = _c - c(i*), using a constant-parameter model, -$ A = 0, 

and “measurements” corresponding to the min-L channel residuals. Based 

on known properties of Kalman filters, this interpretation immediately im- 

plies that the estimates will lag behind if X is in fact not constant. It also 

suggests that such errors can be alleviated by using other models for the 

parameter process. In particular, we show below that appropriate models 

can be selected to derive the heuristic high-pass filters of the baseline 

identifier. More importantly, parameter models can be selected which give 

significantly improved tracking performance. 

Equivalence of (approximate) -Newton-Raphson steps and Kalman filters. - 

First, we show the Newton-Raphson step (3) with approximate first and second 

partials equations (6) and (7) is equivalent to a Kalman filter, To do this, 
note first that the second partials approximation can be generated recursively: 

i. e. , 

Let PC 4 vjk B-l VGkT 1-l (23) 
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N-l 1 -1 
c 
k=l 

GkB-’ GkT + “fiNB -l <NT 

-’ + VGNB 
-1 * T -’ 

VyN 
I 

A A T -1 
= pN,1 - pN,l vyN(vyN ‘N-1 ‘YN A i-B) 

A T 

vyN pN-l 

(24) 

where the last step is based on the “Matrix Inversion Lemma” (ref. 4 ). 
Similarly, we can write the entire Newton-Raphson step recursively, 

(25) 

N 
Then XN 

A -1 A V-,-J -’ 
VykB Vyk 

I [ 
- ‘;kB 

-1 1 vk 

N-l 
= pN PNelwl PNwl (c vGkBml Vk) + viNB-l vN (26) 

1 

pN pN-l 
[ 

-1 A A 
‘N-1 + pN ‘yNB 

-1 
= “N 

I 

Now note that equation (24) implies 

pN pN-l 
-1 = I - PNwl vGN( VGNT PN- l vGN + B)-1 viNT (27) 
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and 

pN ‘&J B 
-1 A 

= pN,l ‘yN 
A T -1 A 

- (‘YN pN,l ‘YN A + B) VYN~PN-~YFN B 1 -1 

A A T A -1 
= pj,J-l ‘yN “YN pN,l ‘YN + B, 

Substituting these into equation (11) gives 

;: 
A A A T * -1 A T” 

N = ‘%,1 + pN,l ‘YN (‘YN pN,l ‘YN + B, VN - ‘YN ‘N-1 3 

(28) 

(29) 

Equations (29) and (24) can be recognized as Kalman filter and covariance 

equations for the following system model and measurement equation: 

= %-1 

* T 
mN = VN = ‘yN ‘N + “’ N 

(30) 

where v+ is a white noise sequence with E(v”k v:zd) = Bekt . 

Hence, with proper initial conditions on equations (29) and (24), the 

approximate Newton-Raphson step, equation (3), is equivalent to a Kalman 

filter for a constant parameter process with “measurements” taken to be the 

filter residuals, equation (4), of the (izc)-th parallel channel. Moreover, 

these “measurements” are treated as linear functions of the parameter error 

of that channel: i. e. , 

(31) 
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with “measurement noise”, v*, corresponding to the theoretical residual 

sequence (innovations) under assumptions c = 5 (i:x) , 

Identification of time varying parameters. - With the above Kalman filter 

interpretation, extensions of the parallel-channel concept to time-varying 

parameters become self-evident, 

Case 1: First-order time variation: The simplest extension is to , 

assume that the parameters are first order Brownian motion processes with 

growth rate Qx instead of constants. Then the Newton-Raphson correction 
of Figure 2 would be replaced by the following Kalrnan filter: 

1 
N= G-1 + MN-l ~N(GN~ MN-~ 6~ -I- B) 

-1 
(V, - 

MN-l = pN-l +&A 

A T 
vyN 

A 

‘N-1) (32) 

(33) 

-1 

pN = MN-l - MN-l MN-~ ‘;N + B, ‘;NT MN-l (34) 

This filter provides first order tracking characteristics: zero steady state 

error for constant parameters, 
KVGT = M V;(V;TMV; + B) 

-1 
lag errors inversely proportional to 

VGT for ramp parameter changes, and unbounded 

errors for all higher-order parameter variations. These characteristics are 

much like the tracking behavior achieved with the heuristic high-pass filters 

added in Figure 2. In fact, the heuristic high-passes are entirely equivalent 

to equations (32), (33), and (34) for a particular choice of &A, namely 

Qx = pN,l(l - td/p (35) 

with 

P = exp(-At/T) l 
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To verify this, we substitute equation (35) into equations (32), (33), and (34) 

and work backwards through the steps in equations (23) through (29). First, 

consider the covariance equations, 

MN-1 = pN,l +&A = pN,l/p 

-' + VGN B 
-1 

pN 1 
= ppNwl 

[ 

-1 + ViN B -’ $NT 1 
p pN,l -’ + v& B 

-1 A 
vyN-l 

T 1 + vGN B A T 
-’ ‘YN 

pN 
t&N-k) vGk B -1 

Hence, PN [defined by equations (33) and (34)] is equivalent to PN of 

equation (23), except with exponentially deweighted summands, Similar 

arguments apply to the estimator equation. Rewrite equation (32): 

(36) 

^T 
vyk 

I - MNol vGN(vGNT MN-l vGN + H)-l viNT 1 G-1 

+ MNol GN(vGNT MN-l vGN -I- B)-l vN* 

(37) 

Then reverse equations (27) and (28): 

C I - MN-~ ViN(GNT MN-1 GN + B) 
-1 

VGNT 1 = PN MN-l-’ 

(38) 

= pN(I* pN-1-1) 

50 



MNml GN(VGNT MNml VGN + B) 
-1 

= PN GNB-’ 

Now, substitute these results into equation (37): 

h = PN[p PNml-’ tNel + VGN B-l vN] 

= pN{p pN-1-l [pN-l(p~N-<~ {N-2 + GN-1 ~-l vN-1~1 

+ V;,B -1 vN 

0 

0 

0 

(39) 

(48) 

;N = PN c” JN-Id v; B-f 
k=l k ‘k * 

% 

This is equivalent to equation (25) with exponentially deweighted summands. 
Hence, first-order Brownian motion parameter models result in the heuristic 
high-pass filters for appropriate choice of Q. 

Case 2: Second-order time variation: The filter [equations (32), (33), 
and (34)] can obviously be modified to track higher-order parameter varia- 
tions . For the F-8C in particular, ramp parameter variations are common 
during level accelerations, dives, or climbs, Zero steady state errors 

for these changes can be achieved with second-order parameter variation 
models such as the following: 
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‘k = 5-l + At ‘xk-1 

i, = ice1 + wkMl E’wk+ = Q’h 6kt (41) 

* 

mk = vsz; \ + V+k 

Kalman filters for this model work quite well for F-8C flight transitions. An 
example is shown in Figure 18. This figure compares the tracking per- 
formance of the baseline Newton-Raphson step (equation 3) with heuristic 
exponential deweighting against the performance of Kalman filters designed 
for model, equation (41). The flight transitions were generated with linear 
time-varying perturbation equations, and hence do not include tracking errors 
due to trim transients. They approximate rapid level-flight acceleration 
using a hypothetical engine three times as powerful as the F-8C’s. Standard 
random test signals were applied with less than 0.04 g’s rms acceleration 
levels at the pilot station (ref. 1 ). Figure 17 clearly demonstrates the 
superiority of second-order parameter models for ramp-like parameter 
variations. 

Other Features 

In addition to these time variation solutions, the Kalman filter interpre- 
tation above suggests two other potential improvements of the overall identifier. 
The first concerns the use of residual data from several parallel identifier 
channels. Recall that the Kalman filter interpretation treats the min-L chan- 
nel as a sensor whose “measurement” is the channel’s residual sequence. 
It follows that other parallel channels with small likelihood functions can be 
viewed as additional sensors and a single Kalman filter can be designed to 
combine several such channel “measurements”. These sensors will have 
correlated measurement noise, of course, because each residual sequence 
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D. Nonlinear 6 DOF Transition 
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results from the same basic data sequence TN’ Sensitivity solutions would 
be required for each added channel (to get Vy) and, hence, a tradeoff between 

accuracy improvements and added computations is called for. These ques- 
tions were not investigated under the current program. 

The second potential improvement concerns the use of other external 

data about parameter variations. In the F-8C case, for example, an approxi- 

mate time derivative of < (and hence M6,) can be constructed from three- 

axis accelerometers and attitude sensors as follows: 

d 
dt 

Substituting the approximations 

Mgo =r -22 5, Reference [l] 

L-d 3 
P 73-f -. 00001 m-l, Reference [53 

dh - - V(sin 0 
dt 

- Q cos 8 cos $1, 

I 

small 
P 

dV 
ai- 

- ax+~az-g(sin8-LyCOS~cos~)t 

gives 
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2M60 &Mao - - L ax + Lya v2 
V 2 - (g + 2oo ()(J (sin 8 - cy cos 6 cos I$) 

I . . 
(42) 

y 2M60 
V E 

ax + cxaZ - g(sin e - cycos 8 cos @)I 

As above, this data can be treated as added measurements in the parameter 

variation model to be incorporated directly in the Kalman filter design, The 

data can also be used to adjust the statistics of parameter variations on-line. 

This was done to generate Figure 17C. 

Theoretical Validity 

It is important to recognize that the parallel-channel concept with Kalman 

filter corrections instead of Newton-Raphson steps is still an approximate 

solution of the theoretical “time-varying identification problem”, After all, 

the identification problem posed by equation (1) with dynamics appended for 

parameters 2 is really a nonlinear filtering problem. These generally re- 

quired infinite dimensional solutions, The degree to which the parallel con- 

cept is valid, however, can be assessed qualitatively from equation (31). 

The concept depends fundamentally on the assumption that the residual se- 

quence of the min-L channel is equal to the theoretical innovations process 

plus linear functions of the parameter error. It can be shown that this 

assumption is fully satisfied under the following two conditions: 

0 Parameters c enter only in the matrices G and D of 

equation (1). All other matrices are known, 

0 The functional dependence of G and D on c is linear. 
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Because these special conditions assure linear residuals for all channel 
locations, they are further distinguished by requiring only one channel in 
the parallel-channel structure. Under other conditions, equation (31) holds 
only approximately. The approximation is good if the mm-L channel is 
sufficiently close to the true parameter value and if, simultaneously, the 
parameter rates of change are sufficiently small. 
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SECTION 4 

LATERAL.ADAPTIVE CONTROL 

This section presents the design of the lateral axis adaptive algorithm. 
The design includes a first order Kabnan filter that uses a maximum likelihood 

procedure to estimate air data dependent aircraft parameters. The filter is 

initialized by the pitch axis identifier and provides refined estimates of 

angle-of-attack, true airspeed, and surface effectiveness. These are used to 

schedule gains in an “inertially coordinated” lateral control law, 

In addition we include inertial turn coordination requirements, param- 

eterizations and theoretical identifiability results for the lateral axis. 

Finally, we show the performance of the adaptive design on Langley’s F-8C 

simulator. 

Inertial Turn Coordination 

“Inertial coordination” is a way to achieve good dutch roll damping and 

good turn coordination at all angles of attack. The basic principle of the 

method is illustrated in Figure 18. It consists of maintaining stability-axis 

yaw rate at the value needed to balance centrifugal and gravity forces along 

the body y-axis. This balanced condition corresponds to coordinated turns. 

The required rate is 

r S 
=r-crp 

= -& cost3 sin@ 
(43) 

The inertial coordination principle has been used to develop several flight- 

quality lateral-directional control laws. One design is part of the F-8C 

CCV packake (ref. 6 ). It was derived using optimal control theory with 
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N 

Y=O 

rs 
=r-ap 

mVrs = mgcos8 Sh$+Y 

g cos 8 sin @= 0  Is- v 

F igure 18. Inertial Turn Coordination 
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quadratic penalties on control effort, on roll rate model-following error 

(pm-p), and on the error (e) between actual and desired stability-axis yaw \ 
rate, i. e. , i. 

e = rs (derived) - rs 

= $ co& sin@ - (r - cup) 
(44)X: 

The latter was included specifically to achieve turn coordination by means of 

inertial coordination. The block diagram that resulted after simplification is 

shown in Figure 19. It includes a dominant s-feedback, to the rudder for 

damping and coordination plus various other state feedbacks and crossfeeds. 

The gains KA e, KRP, KRUM, KRPM are scheduled with Q. Their scheduling 

functions were developed from optimal controllers designed for a set of flight 

conditions. Expressions for the functions are given in Table .3. 

A second lateral CAS using the inertial coordination principle but 

designed by frequency domain methods was flight-tested as part of the 

Air Force’s A-7D Multimode Program. Flight results have confirmed 

improved damping and turn coordination properties over conventional yaw 

dampers (ref. 7 1. 

::cThe error E is sometimes called a kinematic sideslip rate since it can be 
derived from an expression for p by assuming the side forces are zero 
(i.. e. , Y&3 f YgrGr P 0). Then fi = crp - r + $ sin@ co& which is equal to e. 
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TABLE 3.0 LATERAL GAIN SCHEDULES 
i . 

Gain Pun&on 

KAe 0.5 c2 CO. 005 ,, 

-7.29a + 0.54 0.005 < CL < 0.15 

-2. Oa - 0.274 0.15 5 CY s 0.275 

-0.675 0.275 SCY 

KRP 0.0474: : ’ (Y < 0.01 

0.54~ + 0.042 0.01 SLY < 0.3 

’ 0.4 . . 0.3 20 

KRUM 0.0096, CY < 0. 0.1 
Oi 16 d -t- 0.008‘ 0.01 <cY< 0.3 

0.05 0.3sCY 

KRPM 0.0095 c! < 0.03 
-0. lru + 0.012 0.03 2 (y 5 0.12 

0 : 0.12 < ct 

Accuracy Requirements 

The problem in implementing’ inertial coordination is the requirement 

for accurate estimates of angle-of-attack, true air speed, and aircraft 

attitude, These signals ustkly require external sensors and may cause 

reliability problems. 

The required air speed accuI;acy, for example, can be determined by. 

assuming that the controller gains are sufficiently high such that 

c =r _ 
S. 6 case Sink = 0 
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. . . 

From Figure 19 the expression for side force then is 

mVr 
S = mgcosesin# +Y’ 

and lateral acceleration is 

. . 
N = 2 = Vr, 

y 
- gcos0 sin@ + A,Vr, 

= Vrs - SoSe Sin@ + AV 6 case sin@ 

N y = gcose sin@ (-1 + q) + Vrs 

Hence, ANY due to velocity errors is 

wY 
= gcosesin# y (45) 

Now if we specify tolerable ANY levels as 0; 02 g’s and let sin@ 1 1 and 

case a 1, we get 

! AV/Vt s 6.02, s 

which indicates that f2.0 percent accuracy is required for the air speed dzita 

source. This number is pessimistic, however, because all coordination Gas 

assumed to come from e. In practice, some coordination is also obtained 

from direct NY feedback and from control surface crossfeeds. These con- 

tributors reduce the required accuracy to approximately k5 percent. Similar 

accuracy requirements can also. be’derived for the angle-of-attack and attitude 

signals. 
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Identifier Design 

Signals with the above accuracy must usually be obtained from high- 

quality air data sensors and an all-attitude platform, The objective of the 

lateral identifier design task was to examine the potential of getting sufficiently 

good angle-of-attack and airspeed estimates on-line to remove the need for 

the air data sensors. As already noted in Section 3 the pitch-axis identifier 

alone falls well short of this goal primarily because the needed parameters 

are weakly identifiable in the baselined low signal pitch environment (ref. 1). 

It should be noted, however, that the inertial coordination requirements do not 

apply when signal levels are low, They are only important during significant 

lateral maneuvers, becoming progressively more severe as the maneuver mag- 

nitude increases, It is reasonable to expect that parameter values will be 

“more identifiable” during such large maneuver periods, and, hence, that the re- 

quired accuracy can be achieved by designing a separate identifier for the lateral axis. 

Design approach, - The lateral identifier was constructed in accordance 

with the NILE design procedure already developed for pitch (ref. 1 ). The 

first step of this procedure calls for model selection and parameterization. 

The next step is a theoretical identifiability study to verify that the desired 

goals can be achieved and to isolate significant parameters in the model’s 

parameterization. This is followed by detailed identifier design, and, finally, 

by simulation verifications. Results of these steps for the lateral identifier 

are summarized below. 

Lateral model and parameterization . - Inner loop lateral-directional 

dynamics are usually represented by a fourth-order linear model with roll 

rate, yaw rate, angle-of-sideslip, and roll angle as state variables 

X = (p, r, p, Q)T 
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and with the following inputs and measured outputs: 

u = (6,s BrJT 

Y = (P,, rm9 NymS $m)T 

For purposes of identifier design in large maneuvers, this model was simpli- 
fied to first-order by treating p, r, and qI as known inputs with 6 as the only 

state variable. The resulting model is 

$3 =Ypp+ [-1ru+Y6 2v 
r y6a] um + Lv %g’ -if- 

(46) 
=N 

y Y m 
= yp)‘P +[o 0 0 fYsrV) (Yea V)] urn+++ 

with urn defined by 

um = (r m, pm, gcosemsin@mj Qrny earnjT 

The unknown coefficients of this model are cr, l/V, (Y 
P 

V), (Y6.V), and 
(YBaV), These were parameterized in terms of known estimates from the 

pitch axis identifier plus six new unknown small perturbations (CL). The 
parameterization is shown in Table 4. 

Theoretical identifiability. - As the next step of the design process, an 
evaluation was made of the theoretical accuracy to which the six new param- 

eters ,blus gust level, 0 
vg’ 

and initial condition, p(o) 1 can be identified 
during large lateral maneuvers. The methodology for these evaluations is 
described in (ref. 1 ) and reviewed in an earlier section. Results are 

summarized in Figures 20 through 25. 
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7’ART.R A 0 T .ATl?R.AT a MOl-ll?T, PARAMETERIZATION 
ALaYY- A,  Yb. - -.s1..-1 -.----_ - _____ -.__--___ __ __--. 

Original coefficienti% New parameter New parameter 
a priori uncertainw* 

CY = BP + CL1 cL1 0.3 Gp 

l/V = l/C, + CL2 cL2 0.210, 

(Y#$n = (12 + CL,) RQp + CL33 
A 

cL3 Oe 2 t”ao)p : 

cL4 1.3 

(YerV) I 42.5 - 1.6 e2p + CL51 t(fi~o)p + CL33 CL5 0.35 ” 

(Y6,v) = -to. 22 + cL6) $o)p + CL31 ‘L6 0.062 ‘: 

*a ) 80 p’ &p’ 
and cp are estimates from the pitch axis identifier. 

**A priori uncertainties are taken from pitch axis identifier performance and from 
Table 13 (ref. 1 1. 
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Figures 21 and 22 show theoretical identification errors for l/V (CL2) 

and (Y (CL,), respectively, as a function of data length for a large rolling 
maneuver and three gust intensities. The RMS sensor noises (for a lOO- 

radian bandwidth) were: 

0 Rate gyro (yaw, roll) 0.15 deg/sec 

0 Bank angle 0.25 deg 

0 Surface positions (6,, 6,) 0.04 deg 

0 Lateral accelerometer 0.003 g 

The maneuver consisted of a square wave sequence of f50 deg/sec roll rate 

commands with a period of four seconds. The curves verify that the required 

inertial coordination accuracy is at least theoretically achievable within one 

to two seconds after the maneuver is initiated. 

Figures 23 and 24 show similar results for a much smaller maneuver, 

f5 deg/sec. As expected, accuracy for this case is poorer. However, it still 

meets the relaxed requirements of inertial coordination at small roll angles. 

Figures 25 and 26 show accuracy predictions for the large maneuver 

case when only three of the six parameters in CL [plus p(o)] are recognized 

by the identifier, This is commonly called “reduced parameter identificatior 

It achieves poorer performance than the full parameter case because errors 

in the unrecognized parameters contribute to incorrect identification. As 

seen from the figures, however, these contributions are small enough to 

justify the reduced parameter approach. 

Detailed design. - Based on the above identifiability findings, a three- 

parameter NILE identifier was developed to estimate CL1, CL2, and CL3. 

As shown in Table 4, these correspond to small deviations from pitch-axis 

estimates of a, l/V, and Mso, respectively. A block diagram of the identi- 

fier is shown in Figure 2.6. It uses a single parallel Kalman filter channel, 

1’ 
. 
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which is not fixed in parameter space, as the pitch-axis channels are, but 

rather moves around to follow the pitch estimates. The usual single Newton- 

Raphson correction is taken from its current location to reach the final 

estimate. Models for the Kalman filter and sensitivity filters of the identi- 
fier were developed by discretizing equation (46) to first order terms and 

rearranging the input vector, urn, for greater computational efficiency. 

Details are provided in the flow diagram of Appendix A. 

Simulation verification. - Because of the transient nature of lateral 

identification (i. e. , good accuracy achieved only during large maneuvers) 

the lateral identifier was not evaluated in an open-loop fashion with emphasis 

on identification errors. Instead, it was evaluated closed loop -- lateral 

estimates ($, l/V) used to schedule the inertially coordinated CAS of Figure 18, 

Table 3 -- with emphasis placed on the damping and turn coordination achieved 

by the overall adaptive system. Investigations were carried out on NASA 
Langley’s F-8C simulator at FCl, FC5, FC8, and FClO. As defined earlier, 

these flight conditions correspond to a middle-of-the-envelope condition, a 

low-; condition, a supersonic condition, and a high-dynamic-pressure condi- 

tion. Time histories from the simulator are given in Figures 27 through 34. 

The adaptive system’s performance (labeled “NILE!‘) is compared in these 

figures with two other lateral-directional controllers. One is the lateral 

CAS from the baseline adaptive program (ref. 1 ). This is labeled “RM, ” 

for reduced measurement. The second is the same inertially coordinated CAS 

of Figure 18, Table 3, but scheduled with perfect values of angle-of-attack 

and velocity. It is labeled “IC. ” 

Comparisons of these three systems are shown for rolling maneuvers 

and followed in the succeeding illustration with step p gust responses. The 

first displays turn coordination quality in terms of the NY and /3 magnitudes 

developed during a turn. The second displays dutch roll damping. It is 

apparent from these comparisons that the adaptive system (MLE) matches 

the damping characteristics of the perfectly scheduled one (IC) quite closely. 

Both are significantly better than the baseline system (RM). 
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The turn coordination comparisons show a close match of the Ny traces 

for the MLE and IC systems but larger p excursions for MLE, These 
excursions are no larger, however, than those of the RM system. Since the 

latter meets all turn coordination requirements for the F-8C (ref. 6 ), the 

MLE system is also satisfactory. 

Although the above comparisons are limited in scope, they suggest that 

good turn coordination and dutch roll damping without conflict can indeed be 

achieved with on-line identification and no air data. The technique is worthy 

of further investigation and eventual flight test. Topics of particular interest 

for further study include direct estimation of the error quantity, 8, instead 

of its scheduling components Q and l/V, and replacement of the Newton- 

Raphson step in Figure 27 with Kalman filter corrections as described in 

Section 3. 
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SECTION 5 
ANALYTICAL REDUNDANCY 

The objective of this task was to examine analytical redundancy within 
the context of the existing structure and computations of the baseline 

MLE identification algorithm. This task was motivated by the recognition 

that most analytical redundancy approaches use Kalman filters of the type 

already available within the identifier to perform failure detection and 

isolation functions. Three candidate concepts were developed and tested on 

NASA’s F-8C simulator. Simulation results indicate the feasibility of these 

preliminary designs. Objective performance standards for analytical re- 

dundancy were then derived from flight safety and mission reliability require- 

ments. Further evaluations of the concepts are recommended to demonstrate 

that these performance standards can be achieved. 

Review of Analytical Redundancy Procedures 

Analytical redundancy is based on exploiting known dynamic and kinematic 

relationships to estimate sensor outputs. These estimates are useful in de- 

tecting sensor failures. In this section published procedures are reviewed 

to identify suitable techniques for the F-8C application. 

A number of failure detection approaches were suggested by R. K. Mehra 
and J. I. Peschon (ref. 8 ) based on the theoretical properties of Kalman 

filter residuals. Tests that apply to Kalman filter residuals include: 

0 Tests of whiteness - The residuals should be independent 

at different time instants. 

0 Tests of mean - Sample means should be zero. 

0 Tests of covariance - Covariance of residuals should equal 

apriori values. 
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Another alternative related to the test of whiteness is the test of orthogonal- 

ity: The residuals and the estimated measurements should be uncorrelated. 

The notion of using Kalman filters as the failure detection device was 

applied by Meier, et. al. (ref. 9 ) and later by Maybeck (ref. 10 ) to the F-4 

sensor complement. Each Kalman filter processed several sensors, In 

addition, isolation of the failure was usually accomplished by noting a large 

filter residual for that sensor and failure indications from other Kalrnan 

filters, 

Kerr (ref. 11) reported a different approach based on suboptimal Kalman 

filters. The state was augmented with failure states (whose zero implies no 

failure) and a test was designed to detect departures from the “no failure” 

trajectory, Isolation of the failure was accomplished by combining groups of 

tests, each with an appropriate set of failure states, This test is intended 

for filters that are known to be suboptimal (i, e., reduced order) and hence 

do not produce residuals with known theoretical properties, 

Montgomery et. al, (ref. 12) have used multiple hypothesis tests to detect 

and isolate failures, A bank of Kalman filters generate sensor residuals 

under a set of different hypothesis, These residuals are accumulated as 

likeli.hood functions with the minimum function indicating the current most 

likely hypothesis. 

Other researchers stich as Willsky (ref. 13) have developed generalized 

likelihood ratio methods to reduce the complexity of hypothesis tests. Those 

techniques use one Kalman filter. Its residuals are correlated against stored 

sets of residual responses, one for each hypothesis. The highest correlation 

then indicates the most likely hypothesis. 

At this point it is apparent that a common element in many of these fault 

detection procedures is the Kalman filter. This element is also a key part of 
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the F-8C NILE adaptive algorithm. Therefore, it seems reasonable to build 

analytical redundancy concepts around the Kalman filters that already exist 

in the adaptive system. Those concepts model the short-period motion of 
the pitch axis and use a rate gyro and an accelerometer as input sensors. 

In the next section three specific redundancy concepts are developed to detect 

failure of these sensors, Each concept is based on monitoring filter resid- 

uals or likelihood functions to detect sensor failures. Isolation is accom- 

plished by including hardware comparison of like sensors or other analytical 

tests. 

Specific designs for the F-8C. - Two designs had the objective cf detect- 

ing and isolating a failure in a dual channel sensor set. The third design 

was aimed at detecting a sensor fault in a single sensor complement but was 

not required to isolate the failure. 

The first two designs use the existing set of pitch axis Kalman filters 

augmented with one extra channel to process measurements from redundant 

sensors, Both designs are based on comparing likelihood functions from the 

minimum-L channel with the redundant channel. The model and filter gains 

in the redundant channel are slaved to the minimum-L channel determined by 

the adaptive algorithm, The only difference between these two channels is 

the set of measurements they process. The structure is shown in Figure 

35. Large deviations in the two likelihood functions indicate that one set of 

measurements is inconsistent (i. e. , a sensor failure). Since likelihood func - 

tions are used for comparison, the larger one will be the result of the failed 

sensor. 

The third design processes the filter residual of a single channel 
only. 

Design details for the three concepts are discussed in the remainder of 

this section. 
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Figure 35. Analytical Failure Detection - Designs 1 and 2 

Design 1: The objective of this design is to detect and isolate sensor 

failures in two redundant sensor sets. The detection is performed by com- 

parison monitoring of like sensors, and isolation is accomplished with an 

analytical test of the difference of likelihood functions as shown in Figure 35. 

The isolation logic can be described in the form of a truth table, 

(Table 5). Let Ig = 1 indicate a m iscomparison of the two gyros, Ia = 1, 

a m iscomparison of the two accelerometers, and I ar = 1, an analytic failure 

indication for sensor set 1. Then simple combinations of these error flags 

will detect and isolate failures in each of the four sensors since the error 

flag pattern is unique for each hypothesis. 
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TABLE 5. - FAULT ISOLATION LOGIC 

Sensor failed 

None 

Gyro 1 

Accelerometer 1 

Gyro 2 

Accelerometer 2 

Error flag 

I 
g ‘a I ar 

0 0 0 

1 0 1 

0 1 1 

1 0 0 

0 1 0 

The analytical failure flag, I,,, was mechanized by testing the statistic 

=k = ALkti”) - hLk(R) = (ok - Lk I(is)) _ (Lk(R) _ Lk l(R) t47) 

for presence of biases. This statistic was selected because it is sensitive to 

sensor failures but not sensitive to errors introduced by anticipated deviations 

between true aircraft parameters, c = st, and Kalman filter parameters, 
s = 6W), To see this, recall that the residual for the (i*)-th Kalman filter 

(with sensor set 1) is 

‘k 
(i::) 

= ykk,) - ;&(i*)). k=0,1,2.. . 

It can be expanded in a power series about the true parameter st as follows: 

‘k 
(PG) A = y&t) - 55, (i*+@ - v;k(i*+ cti*) - ct) + h. o. t. (48) 

= 
<k 

(i*) - 6 
k 

(is j ($i*) - gt) + h. o. t. 
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Here,, &i*) . ^(i*) 1s the theoretical zero-mean white residual sequence, y is 
^(i:k) 

the optimal estimate, and vy is the gradient of, the optimal estimate with 

respect to 5. The analogous expression for the redundant sensor set 2 is 

vk(R) = 
3k 

(RI A - ‘Yk tR) ( cfi*) - st) + h. o. t. 
, 

(49) 

Note that <(R) ’ 1s again a zero-mean white noise sequence which is correlated, 

in general, with the sequence 5 
(i::) 

. 

Equations (48) and (49 ) substituted into equation (47 ) provide the follow- 

ing power series expression for the test statistic z k : 

9 ( ~kTB-lv;k)(R)I (p - St) 

(50) 

+ \\p’ - St ,,2 
r(v~kTB-lv;G,)(i”) _ (v~kTB-lv;k)(R)] ’ h* ‘et 3 

Under normal no-failure conditions, the usual theoretical properties of 

Kalman filters apply to this expression. In particular, 

E[$(R)] = 8, 

E [( ~kT~-lv;k+i*)] = 0, 

E~(5kTB-1v;k)(R)] = 0. 
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Furthermore, if we assume that the two sensor sets have identical noise ’ 

statistics, then s(is) andz(R) are identically distributed sequences, as are 
$i*) and VGtR) . It then follows that E(z) = 0 regardless of the parameter 

error (at least up to 2nd order terms). 

In the event of sensor failure, -of course, one of the likelihood functions 
,W or L(R) .- will increase beyond its normal no-failed value. The test ,’ 

statistic, z, will then develop biases (positive for sensor set 1 failure and 

negative for sensor set 2) which can be detected by statistical decision 

procedures. 

The decision procedure selected for Design 1 was the so-called sequen- 

tial likelihood ratio test (ref. ‘14). It is based on the following function 

A. = 
ffj (zi . . . zk) 

lk fl (Zi , . . Zk) 

where Aik is a likelihood ratio, i is the starting sample, k is the current sample 
(at time t,), f. is the distribution of the test statistics under hypothesis Ho (no 

failure) and fl is the distribution under hypothesis Hl (sensor failure). 

The test is: 

Accept Hl if hik sz A 

Accept Ho if Aik 2 B 

Continue test if A c Aik e B 

If the test statistic, z, has a normal distribution f and the two hypothesis 

correspond to different mean values, the test reduces to comparing the sum 

t This is not quite true for the statistic in equation (50), but convenience 
outweighs rigor. 
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against the follotiing thresholds : 

(k-i)(po + P$ a2 
2 - iP, - I*$ 

dnB <cz& < 
(k-iWo + I*$ 

2 

where p. and ~1 are the means corresponding to hypotheses Ho and Hl 

respectively, and o2 is the variance of the test statistic. 

Parameters for these thresholds were set at 

A = l/B = lo-3 

I 3.8 o for Sensor Set 1 Failures 
PI = 

-3.9 0 for Sensor Set 2 Failures 

Estimates of u for no-failure conditions were obtained from the F-8C simu- 

lation under a variety of commands and gust disturbances. The test was 

initiated whenever either of the two simulated gyros or accelerometers 

triggered the hardware comparators, Ig or Ia. Thresholds for the latter 

comparators are discussed later in this section. A pictorial summary of 

Design 1 is shown in Figure 36. 

Design 2: This design had the same objectives as Design 1. However, 

instead of initiating the analytical test upon miscomparisons of like sensors, 

the test was run continuously. A sequential test of the mean was initiated 

with each sample and carried forward for a fixed period of time. Each new 

test contained its own summation of the test statistic and its own expanding 
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Figure 36. Analytical Test, Design 1 
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threshold, These were compared at each sample, and failure flag, Iar, was 

set if any summation exceeded its threshold. For F-8C simulator evalua- 

tions, a time period of one second was selected for the maximum test length, 

At 32 samples per second, this translates into 32 simultaneous sequential 

tests. A pictorial summary of this design is shown in Figure 37. Note that 

Design 2 may require larger thresholds than Design 1 since no false alarm 

rejection is provided by the comparator. 
‘_._. 

Design 3: The objective of the third analytical redundancy design was 

simply to detect failures of either the gyro or accelerometer in a single 

sensor set without providing isolation. Hence, this design used residuals 

from the min-5 channel only and included no hardware comparators or re- 

dundant channel data. 

The design was again based on the sequential likelihood ratio test. Be- 

cause no redundant data was available, the test statistic was taken to be a 

direct combination of Kalman filter residuals. 

‘k = 

Unlike the difference of likelihood function, this statistic is sensitive to 

parameter errors as well as sensor failures. The thresholds associated 

with the sequential likelihood ratio tests were therefore set significantly 

larger than those of Designs 1 and 2. In all other respects the test was 

identical to Figure 37. 

Simulation Evaluations 

The three analytical redundancy concepts above were briefly evaluated 

on NASA Langley’s F-8C simulator to examine their general performance 

potential. The evaluations consisted of a number of trial “flights” under 
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different signal levels and failure mode conditions. The failure modes 
considered and performance results are summarized below. 

Sensor failure modes. - Realistic failure modes are needed to assess the 

performance of any concept for failure detection. Various sensor failure 

modes have been hypothesized. Some studies (refs. 9 , 10) have categorized 

the failure modes as either 

0 Sudden failures with sudden effects 

0 Sudden failures with drifting effects. 

For this study the the common failure mechanism of a rate gyro and the 

normal accelerometer were identified (refer to Table 6). The various faults 

were then reduced to the following modes: 

0 Zero output 

l Zero to hardover step output 

a Output sticks and remains at one value during a transient 

0 High hysteresis 

0 Low gains. 

This mode set is considered inclusive of all significant failures of the 

sensors in question. Table 6 relates particular sensor faults for the rate 

gyro, accelerometer and position transducer to the above categories. Note 

that many specific failure modes of individual sensors can exhibit one or 

more of the above mode characteristics. 
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TABLE 6. - SENSORS FAULT CATEGORIES 

Fault Mode 

Rate gyro (spring restrained) 

l Open spin motor winding (1) 

l Open pickoff winding (1) 

l Shorted spin motor winding w, (4), (5) 

l Shorted pickoff winding w, (5) 

l Broken torsion spring (2) 

l Frozen gimbal (3) 

l Gimbal stiction (4) 

l Open or shorted demodulator w, (2)s (5) 

Accelerometers (electrical force balance) 

l Open or shorted feedback electronics (11, (2)s (5) 
l Mass stiction (4) 
l Frozen mass (3) 

Position transducer 

l Open pickoff (1) 
l Shorted pickoff m, (5) 

l Pickoff stiction (4) 
l Frozen pickoff (3) 

Note : 

(1) Zero output 

(2) Zero to hardover step output 
(3) Output sticks and remains at one value during a 

transient 

(4) High hystersis 

(5) Low gains 
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Performance Summary 

The performance potential of the’ three analytical redundancy concepts 

was examined by comparing their detection/isolation capability against a 

“performance standard” achieved by ordinary hardware comparators of like 

sensors. The latter consists of simple threshold comparison logic 

I 
Y 

= 1 if jychl. - ych2 1 >, Threshold 

with thresholds set according to Table 7. Table 7 represents typical com- 

.parator thresholds in operational systems, Only the first term of each 

threshold was used, in the simulation because alignment and scale factor 

errors which motivate the -remaining terms were not included in the sensor 
models. 

TABLE 7. - TYPICAL COMPARATOR THRESHOLDS 

Sensor Threshold 

Rate gyro 4/3* [.0255* IFS! +.035* jql +.866/57.3\~\] 

Accelerometer 4/3 * r.012 f IFSI +.056~N,~] 

FS = full scale output 

Detection/isolation capability was evaluated for all five failure modes 

(per sensor) and for five signal levels: 

1) Adaptive test signal only 

2) 1 m/set turbulence 

3) 2 m/set turbulence 

4) C% command = 3 m/sec2 

5) C:: command = 10 m/sec2 
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Results for the hardware comparison “standard” are shown in Table 8. 

It should be noted that the standard is not perfect. “Covert” failures 

(denoted by arrows) require significant excitation (either gusts or commands) 

in order for the failure to be detected:” This is of interest since these covert 
failure modes will be examined with .anaIytical r’edundancy to determine the .’ 
corresponding signal levels, 

TABLE 6. - COMPARATOR PERFORMANCE* 

, 

Failure simulated 

Gyro--Dead 

Gyro--H. 0. 

Gyro--Stuck 

Gyro--50% Gain 

Gyro--Hyst. 

Accel--Dead 

Accel--H. 0. 

Accel--Stuck 

Accel-- 50% Gain 

Accel--Hyst. 

T 
. 

.,Test. signal 

0 

X 

0 

0 
0 

X 

X 

0 

X 

0 

- 

f 

EB 
1 rills gust 

X’ 

X 

X 

0 
0 

X 

x 

0 

x 

X 

it ation , 
2 m/s gust 

X 

X 

X 

0 

0 

X 

x 
X 

X 

X 

CY4=3 m/E 

X 

X 

X 

0 
x 

X 

X 
X 

X 

X 

C!‘xklO m/s 

x e 
X 

X 

x f- 

x f- 

X 

X 

x e 
X 

x e 

:s X = Failure detected 

Results for the three analytical redundancy designs are shown in Table 9. 

Note that all tests can detect the overt failures but the ability to catch covert 
failures varies. Specific failure detection is depicted by the corresponding 

design number given in the table. Time histories for representative condi- 

tions are given in the Appendix, 

Qualitative conclusions which can be drawn from comparisons of Tables 

8 and 9 are summarized in Table 10. 
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TABLE 9. - PERFORMANCE SUMMARY FOR ANALYTICAL 
REDUNDANCY DESIGNS 

Failure simulated Test signal 

Gyro--Dead 
Gyro--H. 0. 
Gyro- -Stuck 
Gyro--50% Gain 
Gyro--Hyst. 

Accel--Dead 
Accel--H. 0. 
Accel--Stuck 
Accel--50% Gain 
Accel--Hyst. 

9-w 

1,293 
1,293 

-9- 

1,293 
9-9 

Excitation, 

9-9 

1,2,3 
w-9 

9-w 

w-9 

1,2,3 
1,293 

9-w 

1,2,3 
9-9 

6FlS gust 

9-m 

1,293 
9-9 

9-9 

9-m 

1,2,3 
1,293 

9-B 

1,293 
M-w 

ce=10 

1 

1,293 
1 
9-w 
-99 

1,2,3 
1,2,3 

s-9 

1,293 
s-9 

C:K=30 

I,2 

I,29 3 

132 
132 
1 

1,293 
1,2,3 

w-9 

1,2,3 
9-m 

TABLE 10. - ANALYTICAL REDUNDANCY 
CONCLUSIONS 

Test Objective Performance 

1 Detect and isolate one of Almost as good as hardware 
two channels comparison to detect and 

isolate one of three channels 

’ 2 Detect and isolate one of 
two channels 

Not as good as Test 1 

3 Detect failure in one Not as good as hardware 
channel comparison to detect failures 

in one of two channels (no 
isolation) 

Test 3 catches overt failures 
only 
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Sensor Fault Detection Requirements 

While the simuiation results show promising failure detection/isolation 
potential for at least one design, these results are preliminary in nature and 

much additional evaluation effort will be required to fully assess the designs. 

In order to establish objective goals for such future evaluations, an effort 

was made to derive qualitative performance requirements for analytical 

redundancy concepts in general, Now, we will discuss these derivations. 

They show that analytical failure detection tests must reach missed, alarm 

rates less than approximately 3.0 percent in order to be competitive with 

direct voting schemes using redundant hardware. False alarm rates, of 

course, must also be acceptable (g 10w3/flight hours). Further Monte Carlo - 

type simulations are recommended to evaluate the analytical redundancy 

designs against these requirements. 

Basic flight control reliabilities. - The contributions of automatic flight 

control systems to aircraft effectiveness have increased the reliance on their 

operation for satisfying mission and flight safety requirements. These re- 

quirements are often quantified as probabilities. For example, the probability 

of a catastrophic failure must not exceed approximately 10 -7 per hour of 

flight (one chance in ten million). Mission abort probabilities are on the 

order of 10 -3 per flight hour, (ref. 15). 

In spite of continual improvements in component quality, a non-redundant 

electronic flight control system still exceeds these allowable fly-by-wire 
flight safety failure rates by about a factor of 1000 (ref. 15). Thus redundant 

configurations are a necessity. 

Various levels of redundancy are commonly classified according to the 

ability of the system to accommodate failures: e. g. , “fail safe”, “single- 

fail-operate” or “dual-fail-operate”. The single and dual refer to the number 

of like failures that can be tolerated without loss of system function. Failure 
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detection is primarily accomplished by comparison monitoring of like out- 

puts. With this limitation the following parallel between failure accommoda- 

tion level and redundancy configuration are common (ref. 16). 

l Fail safe 4 2 channels 

l Single-fail-operate - 3 channels 

l Dual-fail-operate 4 4 channels 

Basic sensor reliabilities. - Because analytical redundancy procedures 

are primarily concerned with sensor failures, it is useful to consider that 

fraction of the above flight control requirements which is allocated to the 

sensors. Conservatively, this will be 10 percent of the total budget. This 

allocation is then further subdivided among individual instruments. Assum- 

ing a complement of 10 sensors gives: 

Probability of total failure < 10 -9 per sensor per hour 

Probability of mission abort 5 10-b per sensor per hour. 

As with the overall flight control system, nonredundant sensors fall 

well short of these requirements, Current failure rates for rate gyros, for 

example, are 10 -4 per hour (one of the worst of the sensor failure rates). 

Hence, redundant sensor configurations are also a necessity. 

Reliabilities for redundant confipurations. - To examine the reliability 

characteristics of redundant sensors, consider a fly-by-wire application with 

quad sensors. The usual approach to management of the set of four is to 

isolate the first and second failed sensors by majority vote, with the third 

failure (sensed by a miscomparison between the remaining two sensors) 

resulting in total disengagement. If the monitoring process is perfect, the 

probability of total failure of the set is approximated by 4Qz, where Qs is the 

probability of failure of one of the sensors in the selected time period. Under 
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I - 

the same .assumption, the probability of failure of any two sensors is 6Qz,. 

a number of significanck to the mission abort probability. In terms of 

current sensor failure rates, the above probabilities are exceedingly small 

numbers, Taking a rate gyro as an example gives 

Probability of total failure = 4&z = 4x10 -12 

Probability of mission abort = 8&E = 6 x 1O-8 

where each applies to a one-hour flight. Consequently, the quad sensor set 

(with perfect monitoring) exceeds requirements by about two orders of 

magnitude. This appears to be an overdesign. 

If a majority-voted triple set were hypothesized instead of the quad, 

however, the associated flight safety and mission abort probabilities of 3Qz 

and 3Qs would produce values of 3 x 1O’8 and 3 x 1O-4, respectively. These 
values fall short of the above requirements by a factor of 30. The situation 

is simply that with conventional comparison monitoring, triple is not good 

enough and quad is too good, 

Complicating the above argument (and changing some of the conclusions) 

is the issue of nonperfect monitoring, which in itself is difficult to deal with 

quantitatively. One attempt to do so argues that a nondetected failure may 

cause quad set failure after the second sensor failure (instead of after the 

third), producing an added total failure contribution of 6Q2, Q,, where Qm 

is the probability of having the first failure occur without being detected and 

that both of the actual sensor failures are alike. The result of such a combi- 

nation of events is that the quad voting logic cannot decide with two good like 
sensors’versus two bad like sensors. A common example of this situation 

is having two sensors fall dead in an interval where insufficient control 

activity (e. g. , cruise) occurs to trip monitors. There is no data available ’ 

to assign numbers to Q,, but a parametric study of its potential effects soon 
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convinces one that it is a significant and probably a dominant contributor to 

total failure rate, For example, speculated values for Qm are in the order 

of 10 02, making the 6&3 Qm term (again for a rate gyro) equal to 6 x 10” 

for the one-hour flight, just within requirements. So now with imperfect 

monitoring considered, the quad set may no longer be “too good”, but just 

good enough. 

The relevance of the above discussion to analytical redundancy require- 

ments lies primary in the notion that imperfect monitoring (an element of 

redundancy mismanagement) is probably the pacing cause for failure of high- 

ly redundant sensor sets. The quality of the required analytical diagnostics 

must be viewed in this perspective. Consider, as an example, an analytical 

redundancy application wherein triple sensors are to be configured for dual- 

fail-op performance. The first failure will be “voted out” by comparison 

logic. The second failure will be detected by comparison monitoring and 

isolated by the analytical diagnostic. The resulting total failure rate is 

Q; + s&2,4,, where the second term represents the probability of a dual sen- 

sor failure and QI, is the probability of failure of the diagnostic to pick the 

bad sensor, Judging the second term to be dominant and equating it to the 

1o-g requirement speculated above, 

3&i&,, = 10” 

or QD = 0.033 for a rate gyro set, meaning that the analytical test must be 

correct in about 97 percent of the decisions made to distinguish a good sensor 

from a bad sensor. This performance appears feasible. Note also that the 

source of failure experienced in the conventional quad set due to imperfect 

monitoring is also present in the above triple set, but it is half as probable 

in the triple. It may simply be included as a contribution to Ql,. 
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In terms of mission reliability, the triple set speculated above will be 

aborted after the second failure, a probability of 3Qz. This is lower than the 

quad set by a factor of two. 

The above reliability figures for quad and triplex systems are summar- 

ized in Table 11. A similar application of analytical redundancy can also be 

made to dual sensor configurations (see Table 12). Here it is assumed that 

another backup system is available. Thus if the dual sensors disagree, the 

system can be safely disengaged. Referring to Table 12, it is noted that a 

dual sensor system does not meet mission abort requirements, This can be 

greatly improved if analytical redundancy is used to select the remaining 

good sensor. By comparing system failure probabilities and mission abort 

probabilities, a probability of a correct decision of 95 percent satisfies 

typical specifications. That is, a 5 percent missed alarm rate is adequate 

for the analytical diagnostic in this application. 

Both Tables 11 and 12 suggest that analytical redundancy concepts can 

make meaningful contributions to overall system reliability even with modest 

performance capabilities. Based on these findings, it is recommended that 

work on Design 1 be continued. The benefit of maneuver dependent thresholds 

should be examined and flight data should be used to verify that the decision 
quality of the algorithm can be made to satisfy the above requirements, 
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TABLE 11. - RELLABILITY CHARACTERISTICS OF QUAD 
AND TRIPLEX SENSOR SYSTEMS 

Failure probability for selected redundancy structures 

Typical Quad, Quad, Triplex with 
specification perfect with imperfect Triplex analytical 

monitor monitor1 redundancs 

System failure 

(lo-’ per sensor) 
4Q; = 4x10-= 44; f 6QEQ, = 0.6x10-’ 3&i = 3x10-* Q; + 3Q2,Q, = 10” 

Mission abort 
(10m5 per sensor) 

6Q; = 6x10-* 6Q; = 6x10-* 3Qs = 3~10-~ 3Qf = 3~10-~ 

NOTES: 

’ QM = 0.02 

’ Q, = 0.033 

TABLE 12. - RELIABILITY CHARACTERISTICS OF 
DUAL SENSOR SYSTEMS 

., 
Typical Failure probability for selected redundancy structure 

specification c Dual Dual with analytical redundancy 

Total system failure o* 
(IO” per sensor) 

Q;Q, = 10” 

(If Q,, = 0. 01) 
I 

Mission abort 
(10B5 per sensor) 

c 

2Qs = 2~10-~ 2QsQD = 1O-5 

(If QD = 0.05) 

*Alternate backup assumed. 
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SECTION 6 
CdNCLUSIONS AND RECOMMENDATIONS 

The extension studies documented in this report have examined three 

areas of refinement for the baseline F-8C adaptive control system designed 

in (ref. 1 ). 

0 Accuracy improvements for pitch axis identification 

0 Lateral axis identification 

0 Analytical redundancy techniques 

Significant results were achieved in each area. 

The pitch study has shown that on-line adjustment of gust level statistics 

improves accuracy of the baseline identifier and/or reduces test signal re- 

quirements. It can be readily implemented by discrete gust level discrimi- 

nation techniques. A two-level case was demonstrated which adds a single 

parallel channel and a second set of stored filter gains to the identifier. 

These extra elements are recommended as permanent modifications of the 

baseline design; Accuracy improvements have also been demonstrated for 

rapid flight transitions. These were achieved with better trim compensation 

and with basic modifications of the underlying NILE design theory. The latter 

results replace the baseline identifier’s Newton-Raphson correction step with 

a Kalman filter correction step designed for dynamic parameter models. 

This change is also recommended as a permanent modification of the baseline 

design, The only negative result of the pitch-axis study is that attitude data 

provides no significant accuracy improvement. 

The lateral-axis study has shown that inertially coordinated command 

augmentation is feasible without air data measurements. A lateral MLE 
identifier was designed with sufficient transient accuracy (during large 

maneuvers) to schedule the full,state lateral CAS (ref. 6 ). The combined 
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lateral adaptive system exhibits excellent dutch roll damping and good turn 
coordination, Further study of this concept is recommended, with emphasis 
on simplifying the identifier. 

Finally, the analytical redundancy study has shown that the baseline 
identifier, augmented with one additional parallel channel to process re- 
dundant sensor data, has significant capabilities for fault detection and 
isolation of gyros and accelerometers. Although evaluation results in this 
area are limited, they indicate that at least one of three suggested analytical 
redundancy procedures is worthy of further development and evaluation. 
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Appendix A 

I + 
qmk’ zmk N 

b Pitch hlghpass filters 
qhk’ Nzh 

b esmk n= 2,w= 2 
b 

‘esh k 

aymk Lateral lowpass filters Ydk 
b 

cycle 6 
P- 

n=2,w=5 

for definitions of y L, u 4 see 

r- -m---- 1 i 

I 
+ + 

(1) 

I 
‘hk’ Nzhk Pitch Kalman filter ‘k 

b 
I 

x 2 (q, cy, 6) * (1) 

I 
‘esh k Channel f ‘k 

b Gust level 4 b 

I 

I 
Repeat for 

I 
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I = 1, 2,... 5 
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I Likelihood accumulation 

I 
J(I) - - PJ (‘I + (v TB-l,,Jk(iI 

I 

I 
I 
I 
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-0 

J(i) 

b 
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Contlnucd 
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I 
I 
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qhk’ Nzhk 

‘esh k 3 P 

+ 4 

Pitch sensltlvlty filter I 

Channel I 
Gust level L 
Parameter p 

Repeat for 
p=l,2 

i 

1 

I----------- 
p 

NR correctlon 

+- 

Kalman correction 

r-- --- ---_- 1 
I 

(I*) 
“k 

au (Ik) k 

I 
Temporary Accumulation 

m=m+vk(lk) 

H=H+ PV~(‘) 

Sensltlvlty accumulation WI 
-4 

vL=jJoL+(vu TB-l”) k (F) 
O”k 

v2L= ,,v2L +(vvTB-‘bv)(‘) 
I 

I 

L------_,------A 
I 

’ Nzhk uk, 

‘esh k 

Pitch Kalman filter 

x=(q,, a) 

Channel Ik 
Gust level L 

(6) 
“k 

b 

* (6) 
‘k 

b 

m 
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I 
L -e--m-- 
Repeat J = 1,2,...,6 ’ 

p 

b J* = /ii’s [Ill;” L (I), ,J* 
I = 1,2,...,5 I 

I 

Cycle 1 = Min - L selection 
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Appendix A 

P 

I 

/ 
I 

l- 
Repeat 

----_ 
for I = I,&...,5 -+ 

+ Cl MIN 

I 
(r*)2 2 

i--------J 

L -----T-----l 

L ----- y-e---- -i 

I 

Cycle 2: Significance Test and Change Logic 
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Appelidix A 

P 

V2L 

i 

n (I) 
X 

i*, j* 

- - - - --- 
1 

I 
I L - I 

.. (6) 
.X 

I 

I 

b I* I 

+ 

+ 

l 

+ 

l 

T = diag (1 + ME’ / Miz); 0) 

p=T-‘p+ 

P *L = T(o *LIT 

;=;wq 

P L = [ (,v *L) + diag (0.0002; 0.411 i 
;(6)= ,(l’k) 
I* = ,* 

------ 
1 

I + I 
Interchange I, 7 and i(‘), x^ (‘) 1 I I I 

r---, 

1 
J(i) i J(i)= J(I) (J(6),J(l*$ Jl) 

I 

I 
I 

I = 1, 2,...,5 I 

L I -------- 
I ‘p------- -I 

Cycle 3: Channel Data Transfer 

-- 
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Appendix A 

NR correction 

r 
_--- 

Pitch Kalman step 

K = PHT (HPHT + 6; * 61-l 

P = ACP-KHP) AT+ Q 

No lateral identification o- --e-e -- 
1 

I I 
4 I 

VLL Lateral NR step I 

V2LL 
R = v2LL-+ dlag (3.6; 0.03; 0.02) ACL 

ä I 

D AWL= -R -I. VL I 
L 

I 

I I . k---------I 
Cycle 4 : Parameter increments 
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Appendix A 

Pitch correction 

;= p + Ac 

* + 
Lateral correctlon 

-+ ;L= +A~L --, 

I 

;L 

I Gain schedule 

G 
Cd- 

= -.015/h so G c* 
0.00058 s G, +,rmln [ 0.0035; - .035/c 1 mlnl GLAT 

GLAT = ‘381 G, Jc 

a^= CL1 

(i/v)= 5 L* 

Cycle 5: Parameter and Gain Updates 
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Appendix A 

A 

ffP = (Nzmk - Nzhk)/ [S3&16,),~ - 0.15 (desmk - 6 eshk) 
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i 
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1 

0 
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0 

12 
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0 

VDL = 0 L 0 

0 0 
0 0 

1 0 

0 0 

0 0 

0 0 

0 

0 1 ICY,,), Gp 

0 0 

0 0 

l(lj16JP 0 1 
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Appendix A 

The lateral model defined in this cycle accepts the following quantities 
as inputs and outputs 

Y =N y - O&.V) 6rm - (YbaV) earn - d ,$!! rm 

yt 
= low passed version of y 

u = - At rm 

At pm 

At [g CO8 em Sin am + t&v) 6 rm + (Ya av’ Barn1 

A 
[I (J&Y) 6rrn + (yS,W barn1 (M6,jp 

At [(Y&W brrn + (Y6aV) da,l /$ ‘;aoIp 
L 

% 
= low passed version of u 

Cycle 6 : Lateral Model Definition 
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APPENDIX B 

ANALYTICAL REDUNDANCY SIMULATION 
TIME HISTORIES 
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Appendix B 

APPENDM B 

ANALYTICAL REDUNDANCY SIMULATION TIME HISTORIES 

This appendix contains some representative time histories that illustrate 

the performance of the analytical redundancy concepts. Both normal opera- 

tion and simulated failures are considered for a variety of input conditions. 

The cases are given in Table Bl below. 

TABLE Bl. REPRESENTATIVE TIME HISTORIES 

Figure 

BI 

132 

B3 

B4 

B5 

B6 

B7 

B8 

B9 

Condition 

Residuals and likelihood differences at FCl with no 
failure and test signal plus sensor noise (TS + SN), 
2 m/s gusts, Thunderstorm (7 m/s gusts) and C* 
command 

Simulated accelerometer failure - high hysteresis 
at FCl 

Simulated accelerometer failure - stuck at FC 1 

Simulated gyro failure - high hysteresis at FC 1 

Simulated gyro failure - dead at FC 1 

Simulated gyro failure - low gain at FC 1 

Residuals and likelihood differences at FClO with no 
failures. Test signal and sensor noise (TS + SN) 
and 2 m/s gusts recorded at CH2 and CH4 (correct 
channel) 

Residuals and likelihood differences at FC5 with no 
failures. TS + SN, commands and gust inputs 

Residuals and likelihood differences at FC8 with no 
failures. TS + SN, command and gust inputs. 
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Appendix B 

For simulated failures the excitation is labeled at the top of each figure. 

OK = Test signal and no failure simulated 

LG = Low gust level (rmsF1 m /set) 

HG = High gust level (rms=2 m /set) 

Lc = Small CD:< .command (3 m /sec2) 

HC = Large C* command (10 m /sec2) 
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